
Preprint
UCRL-JC-147446

Micro Benchmarking,
Performance Assertions
and Sensitivity Analysis: A
Technique for Developing
Adaptive Grid Applications

1. R. Corey, J. R. Johnson, J. S. Vetfer

This article was submitted to
1 1 th International Symposium on High Performance Distributed
Computing, Edinburgh, Scotland, July 24-26, 2002

US. Department of Energy

Livermore

Laboratory
February 25,2002

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This work was performed under the auspices of the United States Department of Energy by the
University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at httD:/ / www.doc.eov/bridae

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

US. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail reDorts@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: httm / /www.ntis.aov/orderine.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http: / /www.llnl.gov/ tid/Library.html

mailto:reDorts@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.llnl.gov

Micro Benchmarking,
Performance Assertions
And Sensitivity Analysis:

A Technique For
Developing Adaptive Grid

Applications*

I.R Cory, 1.R Johnson, J.S. Vetter
Computing Applications eY Research

Department
Lrmnce Livemore National Lrboratory

1) Abstract
This study presents a technique that can
significantly improve the performance of a
distributed application by allowing the
application to locally adapt to architectural
characteristics of distinct resources in a
distributed system. Application
performance is sensitive to application
parameter - system architecture pairings. In a
distributed or Grid enabled application, a
single parameter configuration for the
whole application will not always be
optimal for every participating resource.
In particular, some configurations can
significantly degrade performance.
Furthermore, the behavior of a system
may change during the course of the run.
The technique described here provides an
automated mechanism for run-time
adaptation of application parameters to
the local system architecture. Using a
simulation of a Monte Carlo physics code,
we demonstrate that this technique can
achieve speedups of 18% - 37% on
individual resources in a dtstributed
environment

This work was performed under the auspices of
the U. S. Department of Energy by the University
of California Lawrence Livermore National
Laboratory under contract No. W-7405-Eng-48.

2) Introduction
The interaction between the
parameterization of an application and the
architectural characteristics of the system
on which the application is running is of
fundamental importance to the overall
performance of the application. For a
distributed application, performance
inequities between different resources due
to favorable and 'unfavorable application
parameter - y tem architecture pairings can
significantly affect overall performance.

There is currently no general theoretical
model for predicting performance based
on parameter - architecture pairings.
However there has been success with
using empirical methods, ([l], [5], [8],
[ll]). These empirical systems perform
extensive testing of a range of parameter
values when they aye installed on distinct
architectures. In a heterogeneous,
distributed environment, performing the
empirical test at installation time is neither
practical nor is it always possible. A single
parameter configuration for the whole
application will not always be optimal for
every resource participating in a
distributed computation. Resource
characteristics may not be known at
scheduling time and resources may come
and go throughout the computation. In
addition, executables may be staged rather
than existing as highly tuned software
already installed on a resource.

By using a combination of micro
benchmarking, performance assertions
and sensitivity analysis, the technique
presented here allows a locally scheduled
application component to adapt at run-
time to the resource to which it has been
assigned and then continue monitoring its
performance and adapt as necessary. This
technique is an extension of earlier
empirical studies in that it operates on a

large-scale application and is applied at
run-time rather than install-time.

The technique works as follows:
(see Figure 1)

The application code is instrumented with
performance assertions at positions in the
code where system and problem
parameters can be dynamically varied, (e.g.
between time-steps, or modes such as grid
generation and time dependent
simultation) .

When an instance of the application is
deployed on a local resource in a
distributed environment, it first runs a
micro benchmark varying problem
parameters one at time and finds the
parameters that have the greatest affect on
performance. This micro benchmark can
either be performed within the application
itself or by a separate benchmarking tool
included as a library to the application.

From the aggregate benchmark data the
best parameter configuration for the local
resource is determined and the application
is modified to use this configuration. In
addition, performance assertion bounds
and handlers are set using the micro
benchmark results.

After the micro benchmark phase is
complete and the configured application is
running if the code fails to meet a
performance assertion based on the
original micro benchmark, then control is
transferred to a function registered with
the performance assertion that decides
whether or not to modify a parameter
value. Should the function determine that
it is necessary to vary a parameter value,
then additional benchmarking is
performed beginning with the parameters
to which performance is most sensitive.
A new configuration is constructed and

the application is modified to reflect the
changes in the system behavior.

3) Related Work
An initial attempt at a formal framework
for parameterized architecture adaptive
algorithms was described by Ueberhuber
and Krommer, (191). More recently,
tangible empirical results on
homogeneous, static architectures have
been presented in ([l], [5], [8], [ll]).
Netsolve, ([2]), is a network tool designed
to map a problem to the best available
resource in a chstributed environment
based on network performance. NWS,
([12]), and Globus ([4],
httm //www.dobus.ord provide
information on the status of networks and
the availability of servers. The GADS
project (htt~://nhse2.cs.rice.edu/mads/)
is addressing issues of application
performance and performance contracts
on computational grids. Recently the
GADS project has presented a
framework for adaptive Grid programs,
(m). Code instrumentation and dynamic
steering is explored in ([6], [lo]).

4) Monte Carlo Simulation
The simulation used here is designed to
emulate a large-scale Monte Carlo physics
code under development at LLNL. Both
the actual code and the simulation are
structured in a commmicate, work, rednce
cycle. This iterative structure simplifies
the adaptive process by allowing the
adaptation to take place between
iterations.

For this experiment only MPI parameters
were investigated. Both the simulation
and the Monte Carlo code have been
constructed so that it is easy to

2

dynamically change MPI parameters (e.g.
type of send, buffer size, etc.. .).

Type of Send
irsend (mf= 1)
irsend (mf > 1)
ssend
issend

5) Micro Benchmark Description
For the results described here, the
message size was held constant at 1MB.
The parameters varied were: @e ofsend,
message factor and send bufer.

Max Mm
142.295 140.66
272.17 269.83
181.363 179.302
242.815 207.753

Trpe ofsend was varied between irsend, jsend,
issend.
equally sized units by which the message
is divided. For example, with a I M B
message, a message factor of 2 sends 2 512K
messages. A message factor of 4 sends 4
256K messages, etc.. The results
presented here use message factors of 1 , 2,4
and 8, (for runs on LLNL's GPS cluster
message factors of only 1,2,and 4 were
used). Send buferis the number of sends
held in the buffer before waiting. The
results presented here use send bufers of 0,
4,7, and 10. Holding all other parameters
constant and just varying these three one
at a time generated a total of 54 tests
(4*4*3) per run on ASCI Blue and 36 tests
(4*3*3) per run on GPS.

Message factor, is the number of

irsend (mf= 1)

These tests were run on two distinct
architectures: 3 nodes/2 processors per
node of IBM's ASCI Blue Pacific and 4
processors on a single node on LLNL's
GPS Cluster (Compaq ES45 with 4 lGHz
EV6.8 processors). For each test we ran
the code for 100 iterations and measured
wall-clock time, MPI-time and MB/s.

MB/s MB/s
37.798 37.321

6) Results
Results described here are from multiple
runs using the simulation code.

The results show distinctively that the
instance of the simulation running on
ASCI Blue Pacific was most sensitive to
send-type with the slowest case of

irsend(mf1) offering a speedup of 18% over
the fastest issend with all other parameters
held constant. (Table 1 & Table 2) The
slowest ssend outperformed issend on the
IBM averaging by nearly 20%. The split
between irsend with message factor 1 and
the other irsend data is most likely more an
artifact some coding decisions in the
simulation rather an indicator of how the
Monte Carlo code would interact with the
system configuration. Although, even if
further tests show it to be an accurate
measurement, it is interesting in the sense
that it is a clearly distinguished behavior
and it varies from behavior seen in the
GPS micro benchmarks.

Table 1. ASCI Blue wall-chck timeper @e o f
send

I Type of Send (Max 1 %

issend

Table 2. ASCI Blue throughputper type o f
send.

The micro benchmarks on GPS were not
as separable as those on ASCI Blue.
(Table 3) This is probably due to the fact
that dedicated nodes were used for runs
on ASCI Blue but on GPS the nodes were
shared so load may have added some

3

noise into the data. However, good
results are still observable when averaging
values across test runs. For the same
code, GPS showed a similar profile for
send-@e but message facfor had a more
sipficant effect on performance with an
average of 37% speedup by increasing
message factor from 1 to 2 and an average
speedup of 13% going from message
factor 2 to message factor 4.

Message Factor
1
2

Ave MB/s
19.72
16.42

14 I 14.47

Table 3. GPS Throughputper &be of send.

7) Conclusions
This work shows that for a given
application, different archtectures exhibit
sensitivity to different parameters in a
program’s configuration. By changing the
appropriate parameters for the given
architecture, performance can be
significantly improved. In the simple
simulation studied here, speedup of from
18 Yo to 37% on a single resource is
achieved.

While a good configuration for a
particular architecture can often be
dmovered analpcally, the complexity of
budding a rules system to handle every
possible scenario can be unwieldy.
Sometimes results are unexpected but not
unreasonable (such as buffered sends
performing better than unbuffered sends).
This complexity and the fact that in a
heterogeneous distributed computing
environment, resource characteristics may
not be known even at run-time lead to the
conclusion that an empirical approach is
the best for dynamic application
configuration. The simulation described

here shows that running application-
specific micro benchmarks on the actual
system offers a good mechanism for
determining the effect of parameter-
architecture pairings thus allowing the
application to run using a good
configuration on the local system.

For complex codes, a micro benchmark
such as the one described here is a good
tool for dscovering the behavior of a
system. For codes that have clear
delineation of behavior (e.g. a
computation phase followed by a
communication phase), the code itself
may be used to perform the benchmark
and then adapt itself at runtime.

One of the challenges in evaluating micro
benchmarks is choosing a metric to
evaluate the system. Wall clock time is
not always the best metric since many
different things can affect it (e.g. load).
The same is true about using throughput
as a measure. This difficulty can be
addressed by including data from system
uulities such as hardware performance
counters in the benchmarking phase. Thls
benchmark data can be used to construct
performance assertions that are inserted
between time-steps to determine whether
the behavior of the system is consistent
with the original micro benchmark. If not,
the performance assertion will execute a
handler function to rerun the micro
benchmark and re-configure the
application if necessary.

8) Future Work
The full Monte Carlo physics code is
currently being instrumented using this
technique and results should be available
in the next few weeks. This
instrumentation includes performance
assertions to monitor the application
performance and re-configure if

4

necessary. Test runs on the Monte Carlo
code will be performed on dedicated
nodes of GPS to alleviate any anomahes
introduced due to load on the machines.

The results presented here were based on
a handful of MPI parameters. Both the
simulation and the Monte Carlo code can
vary many more MPI parameters than
those described here. In addition there
are non-MPI parameters that may also
significantly affect performance (e.g.
threads, problem size, array strides and
blocking etc.. .). Choosing the best
parameters to use in the micro benchmark
is also an area for further exploration.

Over the next few months this technique
will be implemented in a f l y distributed
testbed to explore how the local
adaptation contributes to overall
performance improvement.

9) Bibliography

[l] J. Bilmes, K. Asanovic, C-W. Chin, J.
Demmel, “Optimizing Matrix Multiply
using PHiPAC: a Portable, High-
Performance, ANSI C Coding
Methodology.”, International Conference on
Sllpenomputing, 1997.

[2] H. Casanova, J. Dongarra. “Netsolve;
A Network Server for Solving
Computational Science Problems.”,
International Journal for Supercomputer
Applications and Higb Performance Coqbzhng,
vol. 11, no. 3,1997.

[3] I. Foster, C. Kesselman, eds., The
Grid Blueprint for a New Computing
Infasttrrcture. Morgan Kaufmann, San
Francisco, 1998.

[4] I. Foster, C. Kesselman, Globus: “A
Metacomputing Instrastructure Toolht.”
InternationalJournal of Supenoqbuter
Applciations, vol. 11, no. 2,1997.

[5] M. Frigo and S. G. Johnson, “FFIW:
An Adaptive Software Archtecture For
The FFT.” ICASSP, vol. 3, 1998.

[b] J. K. Hohngsworkth, P. Keleher,
“Prediction and Adaptation in Active
Harmony”, Cluster Computing, vol. 2, 1999.

[7] K. Kennedy, M. Mazina, et. al.,
“Toward a Framework for Preparing and
Executing Adaptive Grid Programs”,
International Parallel and Distributed Processing
$mposium. 2002. (to appear)

[SI D. Mirkovic, S. L. Johnsson,
“Automatic Performance Tuning in the
UHFF1: Library”, International Conference on
Parallel Conputing, 2001.

[9] A. R. Krommer, C.W. Ueberhuber,
“Architecture Adaptive Algorithms”,
Parallel Computing, vol. 19, 1993.

[lo] J. S. Vetter, D. A. Reed, “Real-time
Performance Monitoring, Adaptive
Control and Interactive Steering of
Computational Grids”, The International
Journal of High Performance Computing
Applications, vol. 14, n0.4~2000.

I l l] R. C. Whaley, A. Petitet, J. J.
Dongarra, “Automated Emprical
Optimizations of Software and the
ATLAS Project.” Parallel Computing, vol.
27, nol-2,2001

[12] R. Wolsh, N. Spring,J. Hayes, “The
Network Weather Service: A Distributed
Resource Performance Forecasting
Service for Metacomputing.” Journal of
Future Generation Computing Systems, vol.15,
no. 5-6, 1999.

5

Parameter
Values

I i I I

Performance Assertion
Assertion Handlers
Bounds

I Assertion handler mgy initiate new mim benchmark I / I

Figure 1

6

